Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris.

نویسندگان

  • Jörgen Persson
  • Per Gardeström
  • Torgny Näsholm
چکیده

Although an increasing number of studies show that many plant species have the capacity to take up amino acids from exogenous sources, the importance of such uptake for plant nitrogen nutrition is largely unknown. Moreover, little is known regarding metabolism and distribution of amino acid-N following uptake or of the regulation of these processes in response to plant nitrogen status. Here results are presented from a study following uptake, metabolism, and distribution of nitrogen from NO(3)(-) NH(4)(+), Glu, or Ala in Scots pine (Pinus sylvestris L). In a parallel experiment, Ala uptake, processing, and shoot allocation were also monitored following a range of pretreatments intended to alter plant C- and N-status. Uptake data, metabolite profiles, N fluxes through metabolite pools and tissues, as well as alanine aminotransferase activity are presented. The results show that uptake of the organic N sources was equal to or larger than NH(4)(+) uptake, while NO(3)(-) uptake was comparatively low. Down-regulation of Ala uptake in response to pretreatments with NH(4)NO(3) or methionine sulphoximine (MSX) indicates similarities between amino acid and inorganic N uptake regulation. N derived from amino acid uptake exhibited a rapid flux through the amino acid pool following uptake. Relative shoot allocation of amino acid-N was equal to that of NH(4)(+) but smaller than for NO(3)(-) Increased N status as well as MSX treatment significantly increased relative shoot allocation of Ala-N suggesting that NH(4)(+) may have a role in the regulation of shoot allocation of amino acid-N.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Organic and Inorganic Sources of Nitrogen on Maize Yield,N Uptake and Soil Fertility

mineral and organic N sources (farmyard manure) on maize yield, N uptake and soil fertility was assisted in the field experiment carriedout on silty clay loam soil at new developmental farm of the university of agriculture, Peshawar Pakistanduring 2014. Combined dose of N provided from all sources was applied @150 kg ha-1. There were four replications and 6 treatmentsi.e., (T1) control, (T2) 15...

متن کامل

N uptake and yield of wheat as influenced by integrated use of organic and mineral nitrogen

The effect of integrated use of mineral and organic N sources (farmyard manure, poultry manure, and Filter Cake) on yield and N uptake of wheat were assessed in biennial field experiment carried out on silty clay loam soil in Nuclear Institute for Food and Agriculture, Tarnab, Peshawar Pakistan during 2005-07. Combined dose of N provided from all sources was applied @120 kg ha-1. There were 17 ...

متن کامل

Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests

Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input,...

متن کامل

Experimental Manipulation of Precipitation Affects Soil Nitrogen Availability in Semiarid Mongolian Pine (Pinus sylvestris var. mongolica) Plantation

Expected changes in precipitation over large regions of the world under global climate change will have profound effects on terrestrial ecosystems in arid and semiarid regions. To explore how changes in the amount of precipitation in the growing season would affect soil nitrogen (N) availability in a semiarid ecosystem, we established rainout shelters and irrigation systems by simulating 30% re...

متن کامل

Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest.

Our understanding of how saprotrophic and mycorrhizal fungi interact to re-circulate carbon and nutrients from plant litter and soil organic matter is limited by poor understanding of their spatiotemporal dynamics. In order to investigate how different functional groups of fungi contribute to carbon and nitrogen cycling at different stages of decomposition, we studied changes in fungal communit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of experimental botany

دوره 57 11  شماره 

صفحات  -

تاریخ انتشار 2006